Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

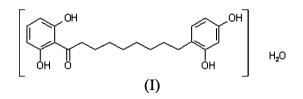
A. K. Bauri,^a S. K. Nayak,^a Sabine Foro^{b*} and Hans-Jörg Lindner^b

^aBioorganic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India, and ^bClemens Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, D-64287 Darmstadt, Germany

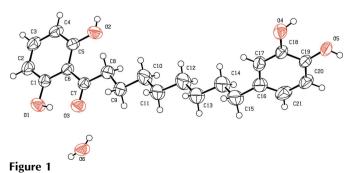
Correspondence e-mail: foro@tu-darmstadt.de

Key indicators

Single-crystal X-ray study T = 299 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.048 wR factor = 0.137 Data-to-parameter ratio = 13.6


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Malabaricone C monohydrate


The crystal structure of the title compound, 1-(2,6-dihydroxyphenyl)-9-(3,4-dihydroxyphenyl)nonan-1-one monohydrate, also known as malabaricone C, $C_{21}H_{26}O_5 \cdot H_2O$, is stabilized by both intra- and intermolecular $O-H \cdots O$ hydrogen bonds. Received 13 April 2006 Accepted 26 April 2006

Comment

The fruit rind of Myristica malabarica, popularly known as Rampatri in Mumbai (India), is used as an exotic spice in various Indian cuisines, as well as in phytomedicine (Forrest & Heacock, 1972, and references therein). It is credited with hepatoprotective, anticarcinogenic and antithrombotic properties and is found as a constituent in many ayurvedic preparations such as Pasupasi. Previous phytochemical investigations of M. malabarica fruit rinds revealed the presence of four novel diarylnonanoids named as malabaricone A-D (Purushothaman et al., 1977). In addition, a lignan malabericanol A and an isoflavone were also isolated from heart wood of the plant (Purushothaman et al., 1974; Talukdar et al., 2000). During our studies of the antioxidant activity of methanol extracts of M. malabarica fruit rinds, we have isolated malabaricone C as a major product. The compound was assayed against breast and colon cancer cells, and the result was quite promising (Patro et al., 2005).

A view of the title compound, (I), is shown in Fig. 1 and a packing diagram depicting the hydrogen bonds is shown in Fig. 2. Details of hydrogen bonding are given in Table 1.

© 2006 International Union of Crystallography All rights reserved

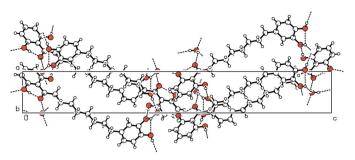


Figure 2

Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Experimental

The title compound was isolated as a major product from a methanol extract of *M. malabarica* by column chromatography over silica gel with gradient elution by changing the polarity of the solvent system using ethyl acetate in petroleum ether followed by purification by preparative thin-layer chromatography. Crystals suitable for X-ray data collection were obtained by recrystallization from aqueous methanol at room temperature by slow evaporation.

Crystal data

 $\begin{array}{l} C_{21}H_{26}O_5 \cdot H_2O\\ M_r = 376.43\\ Orthorhombic, P2_12_12_1\\ a = 5.4549 \ (6) \ \text{\AA}\\ b = 9.176 \ (1) \ \text{\AA}\\ c = 40.718 \ (3) \ \text{\AA}\\ V = 2038.1 \ (3) \ \text{\AA}^3 \end{array}$

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: none 3822 measured reflections 3566 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.137$ S = 1.043566 reflections 263 parameters H atoms treated by a mixture of independent and constrained refinement

3323 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 67.0^{\circ}$ 3 standard reflections frequency: 120 min intensity decay: 1%

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1014P)^{2} + 0.1804P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.007$ $\Delta\rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.21 \text{ e} \text{ Å}^{-3}$ Extinction correction: *SHELXL97*Extinction coefficient: 0.0035 (6)
Absolute structure: Flack (1983),
1404 Friedel pairs
Eleck personator = 0.1 (2)

Flack parameter: -0.1 (2)

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
01-H10···03	0.86 (2)	1.67 (2)	2.4938 (19)	160 (3)
$O2-H2O\cdots O4^{i}$	0.84(2)	1.92 (2)	2.748 (2)	173 (3)
O4−H4O···O6 ⁱⁱ	0.87 (2)	1.98 (2)	2.788 (2)	153 (3)
O4−H4O···O5	0.87 (2)	2.34 (3)	2.675 (2)	103 (2)
O5−H5O···O6 ⁱⁱⁱ	0.80(2)	1.95 (2)	2.724 (2)	164 (3)
O6−H61O···O1 ^{iv}	0.85 (2)	1.96 (2)	2.8006 (19)	169 (3)
O6−H62O···O3	0.82 (2)	2.12 (2)	2.788 (2)	138 (2)
Symmetry codes:	(i) $-x + 1$,	$y - \frac{1}{2}, -z + \frac{1}{2};$	(ii) $-x, y - \frac{1}{2},$	$-z + \frac{1}{2};$ (iii)

 $-x - 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $x - \frac{1}{2}, -y + \frac{1}{2}, -z$.

The O-bound H atoms were located in a difference map and their coordinates were refined. The H atoms of the water molecule were refined with geometry restraints (Nardelli, 1999), *viz*. O–H distances were restrained to 0.85 (2) Å and the H…H distance was restrained to 1.36 (2) Å. The C-bound H atoms were positioned with idealized geometry using a riding model, with C–H = 0.93 Å (aromatic) and 0.97 Å (methylene groups). For all H atoms, $U_{iso}(H) = 1.2U_{eq}(C,O)$.

Data collection: *CAD-4-PC* (Enraf–Nonius, 1996); cell refinement: *CAD-4-PC*; data reduction: *REDU4* (Stoe & Cie, 1987); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

The authors thank Professor Dr Hartmut Fuess, FG Strukturforschung, FB Material- und Geowissenschaften, Technische Universität Darmstadt, Germany, for diffractometer time.

References

- Enraf-Nonius (1996). CAD-4-PC. Version 1.2. Enraf-Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Forrest, J. E. & Heacock, R. A. (1972). Lloydia, 35, 440-490.
- Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.
- Patro, B. S., Bauri, A. K., Mishra, S. & Chattopadhyay, S. (2005). J. Agric. Food Chem. 53, 6912–6918.
- Purushothaman, K. K., Sarada, A. & Connolly, J. D. (1974). *Indian J. Chem. Sect. B*, **23**, 46–48.
- Purushothaman, K. K., Sarada, A. & Connolly, J. D. (1977). J. Chem. Soc. Perkin Trans. 1, pp. 587–588.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stoe & Cie (1987). *REDU4*. Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.
- Talukdar, A. C., Jain, N., De, S. & Krishnamurthy, H. G. (2000). *Phytochemistry*, 53, 155–157.